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Abstract. We study the numbers of lattice animals with specified topologies. We prove 
that the growth constant for animals with c cycles and n, vertices of degree k ( k  = 3, . . . ,2d) ,  
weakly embeddable in a d-dimensional hypercubic lattice, is equal to p. the growth constant 
for self-avoiding walks. For some particular topologies we derive upper and lower bounds 
for the corresponding critical exponents and estimate the values of these exponents by 
deriving and analysing new exact enumeration data. We conjecture that our previous result 
for trees with b branches (that the exponent is y + b - 1, where y is the self-avoiding walk 
exponent) is also valid in the more general case in which the cyclomatic index (c )  is 
non-zero; i.e. for b 3 1, the exponent does not depend on c. 

We show that our results are consistent with renormalisation group arguments that the 
universality class of branched polymers is independent of cycle and (non-zero) branching 
fugacities. 

1. Introduction 

Although the statistics of branched polymer molecules have been extensively studied 
since the pioneering paper of Zimm and Stockmayer (1949), it is only quite recently 
that excluded volume effects have been incorporated by modelling the polymer 
molecules as lattice animals (i.e. connected graphs weakly embeddable in a regular 
lattice). This model seems to have been first considered, in this context, by Lubensky 
and Isaacson (1979). For a general discussion of this problem, with many references, 
see Gaunt e? a1 (1984). 

The original renormalisation group calculations (Lubensky and Isaacson 1979, 
Family 1980) predicted that critical exponents would be independent of branching 
and cycle fugacities. This led to Monte Carlo and exact enumeration studies of trees 
(i.e. animals with no cycles) and this work showed that critical exponents were the 
same for trees and animals (Seitz and Klein 1981, Duarte and Ruskin 1981, Gaunt e? 
a1 1982). However, if the number of cycles is fixed, rather than the cycle fugacity, 
then the exponent charcterising the number of c-animals depends on the cyclomatic 
index, c (Whittington e? al 1983). 

The effect of fixing the number of branch points in a tree has also been studied. 
In particular Lipson and Whittington (1983) have shown that the limiting entropy per 
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monomer is independent of the number of branch points, provided that the number 
of branch points does not go to infinity too rapidly, as the size of the tree increases. 
Gaunt et a1 (1984) have considered lattice trees with specified topologies and have 
investigated the dependence of the value of the critical exponent characterising the 
number of such trees on the number of branches. 

In this paper we extend this type of treatment and consider connected graphs with 
a fixed, non-zero, number of cycles and a fixed number of branch points. In 2 we 
show that, if a ( n ,  c ;  n3, n4,. . . , n z d )  is the number of animals with n vertices, c cycles 
and n, vertices of degree i ( i  = 3 , .  . . , 2 d )  weakly embeddable in a &dimensional 
hypercubic lattice, then 

lim n-' log a ( n ,  c ;  n3, .  . . , n Z d )  = log p (1.1) 
n+m 

where p is the growth constant for self-avoiding walks. (The limit in (1.1) is taken 
with c, n3 , .  . . , nZd fixed.) 

The set of numbers {c, n3,.  . . , n2d}  does not uniquely define a topology. For 
instance, theta graphs and dumbbells (Sykes 1961) both have c = 2, n3 = 2, n4 = . . . = 
nZd = 0. These graphs can be distinguished if we define the number ( b )  of branches 
as the number of cut edges in the homeomorphically reduced graph. This definition 
of the number of branches coincides with the definition previously used for the special 
case of trees (Gaunt el al 1984). 

Guttmann and Whittington (1978) have investigated the value of the exponent for 
all the closed connected graphs with c = 2. They presented convincing numerical and 
non-numerical evidence that the exponent for dumbbells ( b  = 1) is identical to that 
( y) for self-avoiding walks. Similar non-numerical arguments (based on a counting 
theorem) can be constructed which indicate that the exponent for tadpoles (c  = 1, b = 1) 
is also equal to y. This suggests that the value of the exponent is determined by the 
value of b (for b z- 1)  and not by the value of c, so that the conjecture of Gaunt er a1 
(1984), that the exponent for trees with b branches is y + b - 1, may apply to the more 
general case of a connected graph with b ( 3 1 )  branches and c cycles. 

We investigate this extended conjecture using several techniques. In P 3 we describe 
several methods by which bounds on the critical exponents may be derived. We 
concentrate in particular on the numbers of twin-tailed, two-tailed and Y-tailed tadpoles 
(see figure 1). The first two each have c = 1, b = 2, though they differ in the numbers 
of vertices of degree three and four, and the two-tailed and Y-tailed tadpoles each 
have c = 1, n3 = 2 but have b = 2 and 3, respectively. In 0 4 we form numerical estimates 
of the critical exponents for these three topologies, by enumerating these graphs for 
small n for the triangular, square and simple cubic lattices, and analysing the resulting 
series. The results of 80 3 and 4 are consistent with the above conjecture. We discuss 
the connection between these results and renormalisation group results in § 5. Our 
results are summarised and discussed in § 6. 

i Q )  ib )  (cl 

Figure 1. Twin-tailed ( a ) ,  two-tailed ( b )  and Y-tailed (c )  tadpoles. 
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2. Growth constants 

In this section we shall prove that a graph having fixed cyclomatic index (c) and a 
fixed number (n3)  of vertices of degree 3, n4 of degree 4, and so on up to degree 2d, 
has a growth constant equal to p, the growth constant for self-avoiding walks. Let 
this set of restricted animals be denoted by A(n,  c ;  n3, .  . . , nZd)  where n is the total 
number of vertices in the graph, and define the cardinality (per lattice site) of this set 
to be a (  n, c ;  n 3 , ,  , . , nzd) .  The work which follows concerns graphs weakly embeddable 
in a d-dimensional hypercubic lattice though extension to other lattices is possible. 
The vertices of such a lattice are the integer points in a d-dimensional Euclidean space 
with coordinates (x,, x2,. . . , &).  The edges of the lattice join vertices which differ by 
unity in a single coordinate. 

Recently Lipson and Whittington ( 1983) have demonstrated that the growth constant 
for a restricted tree, where the number of branch points is fixed, is p ; a similar approach 
will'be used here. Thus the upper bound will be obtained by considering the number 
of connected graphs possible on n* = n,  + n3 + n4 +. . . + nZd labelled vertices, and a 
lower bound will be derived by relating a ( n ,  c ;  n3,. . . , n Z d )  to the number of embed- 
dings of a certain type of tree. 

To derive a lower bound we relate the number of graphs with c cycles to the number 
with c - 1 cycles, thus arriving by recursion at the case of zero cycles (i.e. a restricted 
tree). The idea is to show that for every set {n, c ;  n3,. . . , nZd} there exists a correspond- 
ing set { n ' ,  c = O ;  n i ,  . . . , nid} such that by adding c cycles and adding n 3 -  nj ,  n4- 
n:, . . . , n2d - nid  vertices of degree 3,4, . . . ,2d in a systematic and well defined manner, 
the restricted tree is converted to an animal having exactly c cycles, n3 vertices of 
degree 3, and so on. To do this we require an algorithm for adding vertices of degree 
3 and higher to create additional cycles. 

We recall that Euler's relation for a connected graph having n vertices, e edges 
and c elementary cycles is 

c = e - n + l  (2.1) 

e = f  C in, ( 2 . 2 )  

where 
? d  

I = )  

and hence 

We note that specifying n, c, n 3 , .  . . , nZd  determines n ,  and n,. 
The graph under consideration consists of a set, So, of vertices. To locate the top 

vertex first construct the subset SI c So such that the coordinate xI  of every vertex in 
S, has the maximum value over all vertices in So. Then recursively construct Sk c Sk-1 
such that the coordinate xk of every vertex in Sk has the maximum value over all the 
vertices in Sk-, .  Continue this process until the j th  subset (S,) has been constructed, 
where j is the smallest integer such that S, has only one member. We call this vertex 
in S, the top vertex U, of So. U, is joined to one or more other vertices, the coordinates 
of each differing from those of U, by unity in exactly one coordinate. The top edge, e,, 
is that which joins ut to the vertex differing from it in the coordinate of highest number; 
we call this vertex the edge vertex, ve.  
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Suppose that we wish to add one or more cycles to this structure. We describe two 
constructions. 

Construction 1 .  We can add ( i  - 2)/2 cycles, converting a vertex of degree 2 to a vertex 
of degree i, where i is even and greater than 2, as follows. Let the top vertex of the 
graph be U, with coordinates (x:,x:, . . . , x i ) .  Define the unit vectors G I  = 
(1,  0, 0, . . . , 0), Gz = (0, 1, 0, . . . , 0), . . . , Gd = (0, 0, . . . , 1).  Delete the top edge, adding 
the vertices U: = U, + G I ,  U: = U, + G I  and the edges (U, - U;), (U,- U:), (U: - U:). (If 
U, = U, - C l ,  as can occur if U, is of unit degree, a minor gloss is necessary. In this case 
add the vertices U, = U, + C l ,  U: = U,+ G I ,  U: = U: - I?, and Ub = U: - C l ,  and the edges 
(u t -  U,), (U, - U:), (U: - U:) and (U: - ub).) A hypercubic lattice in d dimensions is 
defined by d perpendicular planes, and the set of vertices {U,, U,, U:, U:} is contained 
in one plane. Therefore, in order to add the maximum number of cycles, there are 
( d  - 1)  available planes in which to place the vertices and edges needed to form unit 
squares (cycles) which contain U: as one of their four vertices. So, for example, if i 
equals four and d = 2, create a cycle in the plane (GI, G2) by adding the vertices 
vI  = U: + G I ,  uZ = U: + G2, u3 = vI  + GZ, and the edges (U: - u l ) ,  (U: - uZ) ,  ( uI - 4 and 
( u2 - u 3 ) .  If d > 2 then the planes to be utilised will depend on the vector joining U: 
to U:. If U: = U: + G3, add the first cycle as above and, if i = 6, construct the next cycle 
by adding the vertices u4 = U: - us = U: + G3, U6 = vs  - 6, and the edges (U: - u4), 
(U: - u5) ,  ( v5 - ?&) and ( u4 - U,) (see figure 2). If U: = U: + GZ, a cycle can be added in 
the plane ( GI, G3) and a second cycle in the plane ( Gz, Gj) by a similar construction. 
This process can be continued into higher dimensions, always adding the next cycle 
in the plane containing unit vectors of lowest possible coordinate until U: is of the 
desired degree i. In figure 2, U: is of degree 6 and two cycles have been added. In 
general, the resulting structure will have c + ( i  - 2)/2 cycles and n + 3 (  i - 2)/2 +2 
vertices in total, n2 + 3 (  i -2)/2 + 1 of degree 2 and ni + 1 of degree i, the numbers of 
vertices of all other degrees being unchanged. 

Y .  V I  v,' 

Figure 2. Addition of two cycles through a new vertex of even degree. 

Construction 2. Cycles may be added by converting two vertices of degree 2 to vertices 
of degree i and j, with i and j both odd and greater than 2. This can be attained by 
constructing U: and U: and then changing them from degree 2 to degrees i and j 
respectively to produce [ l  + ( i  +j-6)/2] cycles. For an example of this see figure 3. 
The first cycle is created by adding the vertices u1 = U: +GI, v2 = U: +GI and the edges 
(U: - u I ) ,  (U:- u Z ) ,  ( u I  - U*). U: and U: are now both of degree 3.  Additional cycles 
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V: 
"1 

+ 

Figure 3. Addition of two cycles through two new vertices of odd degree. 

may be added as described above, ( i  -3) /2  joined to U: and ( j  - 3)/2 to v:. The 
resulting structure has c + 1 + ( i  + j - 6)/2 cycles and n + 4 +f( i + j - 6) vertices in total, 
n2 + 2  +j( i + j -6) of degree 2, ni + 1 of degree i and nj + 1 of degree j, the numbers of 
vertices of all other degrees being unchanged. 

We now wish to construct a set of graphs which are appropriate 'precursors' to the 
graph under consideration, and which have either one or no cycles. To do this we 
look for a set of integers {nl,  ni,.n;, . . . , nhd} such that 

ni, s nk, Vk s 3, 
and 

nl, = n,. 

If n, 2 2, we also require that 
2d 

( i - 2 ) n : + 2 = 0  
i = l  

so that, from (2.3), (2.5) and (2.6), 
2d 

(i  - 2)( ni - ni) = 2c. (2.7) 
i = 3  

This ensures that the set of vertex degrees {nl, . . . , nbd} defines a tree. To be specific, 
we minimise nkd, nkd-,, . . . successively, subject to (2.4) and (2.7). 

If n, < 2 no corresponding tree 
cycle by requiring the n i  to satisfy 

2d 

( i - 2 ) n j = 0 .  
i = l  

This implies that 

and 
n; = n{ 

ni, = 0, V k > 3 .  

would exist and so we look for a graph with one 
(2.4), (2.5) and 

(2.9) 

(2.10) 

If n, = 0 the set {nl,  n;, . . .} corresponds to a polygon. 
We concentrate on the case with n, 3 2 and consider adding cycles to the tree using 

constructions 1 and 2 described above. 
Using construction 1 we successively add nZd - nid vertices of degree 2d  (forming 

( d  - 1)(n2d - nhd) new cycles), n2d-2- nhd-2 vertices of degree 2 d  -2  (forming (d -2) 
(n2d-2- nid-2) new cycles), etc. For vertices of odd degree we first note that (2.7) 
implies that 

d-1 

p = l  
c (n2p+1- & + l )  = 0 (mod 2) (2.1 1) 
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so that vertices of odd degree can be added in pairs. We imagine making a list of the 
vertices of odd degree to be added, starting with those of highest degree, and add 
them successively from this list, in pairs, using construction 2. 

During this process, some vertices of degree 2 will also have been added and each 
tree with n’ vertices, n i  of degree 3 , .  . . , nhd of degree 2d will have given rise to a 
unique graph having n vertices, n3 of degree 3, .  . . , n2d of degree 2d, and c cycles. 
The difference between n and n’ will be a (bounded) function of n3,  n 4 , .  . . etc so that 
the construction will work for ali sufficiently large values of n. Since trees with fixed 
numbers of branch points (Lipson and Whittington 1983) have a growth constant of 
F, it follows from the above that 

lim inf n- l  log a ( n ,  c ;  n 3 , .  . . , n2d)310gp.  (2.12) 
n-rw 

The case with n ,  = 0 can be treated in an analogous fashion beginning with a 
polygon and adding vertices of degree 3 and higher to form an appropriate number 
of cycles. Since the growth constant {or polygons is /I (Hammersley 1961), (2.12) 
follows. 

When n ,  = 1 there is no solution except when n3 2 1. (The solution is then nl, = n ;  = 
1, n: =. . . = nkd = 0, i.e. a tadpole.) To treat this situation we use a polygon as a 
precursor adding vertices of even degree by construction 1 and pairs of vertices of odd 
degree (and of degree greater than or equal to 3)  by construction 2. This will leave 
two odd-degree vertices, one of unit degree and one of degree k with k 3 3. We add 
these vertices by a variant of construction 1. If k > 3 we use construction 1 to add a 
vertex of degree k - 1 and then add a single adjacent vertex and the edge joining this 
pair, with the result that the two vertices are of degree 1 and degree k. If k = 3, we 
form U: and U: and add a single vertex adjacent to U:, and the edge joining them to 
give two vertices, of degree 1 and 3. Each polygon gives a unique graph with fixed 
c, n 3 , .  . . by this construction and (2.12) follows. 

To obtain an upper bound on a ( n ,  c ;  n 3 , .  . . , n 2 d )  we first consider an upper bound 
on the number of ways of connecting the set of ( n l ,  n 3 , .  . . , n Z d )  vertices; i.e. we need 
the number of connected graphs containing n* labelled vertices, and c cycles, where 

n* = n, + n3 + n4 +. , . + n5d. (2.13) 

An upper bound on this quantity is given by the number of graphs on n” labelled 
vertices, which is 2(;*). The edges in this graph are now replaced by the N simple 
chains contained in each member of A ( n ,  c ;  n 3 , .  . . , n z d ) ,  N being given by 

N =  1-~+2n,+3n,+...+(2d-I)n,~. (2.14) 

Making up these N chains are m = n + c - 1 edges, and each chain has between one 
and m - ( N  - 1) edges. Recall that the number of embeddings of a simple chain having 
m edges is exp[mrc + o ( m ) ]  where K =log p. From the above 

where ml is the number of edges in the lth simple chain and the sums are taken over 
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{ml} subject to the conditions 

(2.16) 

The sum on the right-hand side of (2.15) includes configurations with self-avoiding 
but not mutually avoiding chains. Performing the summations, and noticing that m1 6 m 
for all I gives 

(2.17) a(n, c ;  n3,  n 4 , .  . . , n 2 d )  s 2(;*'mN exp[mK +o(m)l  

and from (2.13), (2.14) and (2.17) 

a(n ,  c ;  f l 3 ,  f l 4 , .  . . , fl,d)<exp[flK + o ( f l ) ]  

where c and n3, n4, . . . , nzd are fixed. Then from (2.12) and (2.18) 

(2.18) 

lim n- '  log a ( n ,  c ;  n 3 , .  . . , n 2 d )  =log p = K .  (2.19) 
n-cs 

Therefore an animal with a fixed number of cycles and a fixed number of branch 
points has the same growth constant, or limiting entropy per monomer, as that of a 
self-avoiding walk. 

3. Bounds on exponents 

In this section we derive exponent bounds for three particular topologies, the twin- 
tailed, two-tailed and Y-tailed tadpoles (see figure 1).  These are simple examples of 
graphs with fixed numbers of cycles and branch points and these results play an 
important role in our discussions concerning a possible form for the dependence of 
the value of the exponent on certain characteristics of the topology. 

To simplify the notation we shall write t y ) ,  tk2' and tk3' for the numbers, per site, 
of weak embeddings of twin-tailed, two-tailed and Y-tailed tadpoles, with n edges. 
Notice that all of these graphs are undirected and unrooted. Similarly, we write 1, 
and p n  for the numbers of undirected, unrooted tadpoles and polygons and c, for the 
number of directed self-avoiding walks. We shall assume the usual asymptotic forms 

and, by analogy 

We first consider an upper bound for the number of two-tailed tadpoles. We write 
n , ,  n,, n3 for the numbers of edges in the circuit and in the two simple chains. With 
these numbers fixed we can concatenate a polygon with two self-avoiding walks, with 
the walks attached by a unit degree vertex to the polygon at each pair of polygon 
vertices in turn. The resulting graphs will include all two-tailed tadpoles with this 
distribution of edges and, summing over n , ,  n,, n3 subject to n ,  + n2 + n3 = n, we have 
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for some positive constant A. From the assumed form (3.1) and the result of Ham- 
mersley and Morton (1954) on the direction of approach to the limit, it follows that 
y - 1 2 0, so that 

y (2)smax[2y+ 1,2-y+a]. (3.5) 

Similar arguments for Y-tailed tadpoles yield y(3) s max[2y +2,2y +a] and for twin- 
tailed tadpoles, y(  1)  s max[ y + 2, y + a]. Numerical evidence indicates that 0 < a < 1. 

The bounds for 743) and y (  1)  can, however, be improved somewhat. If we consider 
each Y-tailed tadpole and remove an edge in the circuit, incident on the vertex of degree 
3 in the circuit, the resulting graph is a Y (i.e. a star with three branches) having n - 1 
edges. If we write y ,  for the number of Y's with n edges and assume 

y ,  - nd-Ipn,  (3.6) 

we have 
t ( 3 )  

n " 4 " - I  

for some constant A and hence 

Y(3) 4. 
Gaunt et a1 (1984) have shown that 4 =z 2y + 1 so that 

y(3) s 2y + 1. 

(3.7) 

(3.8) 

(3.9) 

A similar argument for two-tailed tadpoles gives y (2 )S2y  + 1. 
In order to improve the bound on y(  1)  we make use of an idea due to Guttmann 

and Whittington (1978), and we consider only the square lattice though similar argu- 
ments can be constructed for any simple hypercubic lattice. Each twin-tailed tadpole 
contains a single vertex of degree 4 (which we label 0) connected to four vertices 
which we label N, E, S and W, in an obvious notation. Two of these vertices are 
connected to one another by a simple chain not containing 0 and the other two are 
each connected by a simple chain to a vertex of unit degree. The set of twin-tailed 
tadpoles can be divided into six subsets, characterised by the pair of vertices from N, 
E, S and W which form part of a circuit, and examples of members of the subsets NS, 
WS and NW are shown in figure 4. Clearly, by symmetry, the number of members of 
NS is equal to the number of members of WE, and the number of members of NW, 
NE, SE and SW are all equal. 

We consider a twin-tailed tadpole, t, which is nor a member of SW or NE. The 
graph is rooted at 0. Suppose there are s, such graphs, with n edges. Clearly, 

s, s t Y ' = z  2sn, 

s, - n Y ( l ) - l  

so that (3.3) and (3.10) imply that 

I* 

(3.10) 

(3.1 1 )  

( i )  lii) 1111)  

Figure 4. Twin-tailed tadpoles in (i) the NS class, ( i i )  the sw class and (iii) the NW class. 
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For each such graph we define an operation (T) in which the edges ON and OE 
are removed and replaced by O‘N and O‘E where 0’ is the fourth point of the square 
defined by ON and OE, as in figure 5 .  Now we have several possibilities to consider. 

Figure 4. The operation in which ON and OE are replaced by O’N and O’E. In this case 
the resulting graph is a simple chain. 

If 0’ is not a vertex o f t  then Tr is a simple chain (or undirected self-avoiding walk) 
rooted at 0. If 0’ is a member of t and either O’N or O’E is an edge of t, then Tt will 
contain a double edge and deletion of this edge will yield an ( n  - 2)-edge simple chain 
rooted at 0. If 0’ is a member of t but neither O’N nor O’E is an edge of t, then 0’ 
can be either of degree 1 or of degree 2 in t and hence of degree 3 or 4 in Tt. In the 
former case Tt is a tadpole with n edges, rooted at 0. In the latter case Tt will be a 
twin-tailed tadpole (and it is easy to see that Tt cannot be of type SW or NE). In this 
case we iterate, forming T’t, T3t, etc until a simple chain, a simple chain with an 
added double edge or a tadpole is produced. Clearly one of these events must eventually 
occur since the root remains at 0 and as successive twin-tailed tadpoles are formed 
the vertex of degree 4 moves in a north easterly direction at each iteration and would 
otherwise eventually leave the original graph. Hence 

s, s ( n  - 2)c,-’ + nc, + nt,. (3.12) 

For every tadpole, removing an edge of the circuit, incident on the vertex of degree 
3, produces a simple chain, so that 

t ,  s c,-, (3.13) 

and hence 

s, s 3nc,. 

Then from (3.1), (3.11) and (3.14) 

(3.14) 

y( 1 )  c y + 1 .  (3.15) 

We now show that y( l ) ,  y(2) and y(3) are each greater than or equal to y. 
We consider each n-edge self-avoiding walk weakly embeddable in the d- 

dimensional simple hypercubic lattice. We define the top vertex, edge vertex and top 
edge in the usual way (see 0 2, for instance). For a particular walk let the top vertex 
(U,) have coordinates (x:, x:, . . . , x i ) ,  and let the edge vertex (U,) have coordinates 
(x:, x i , .  . . , xed). The vertices U, and U, can be of degree 1 or 2. We first carry out a 
construction which produces a self-avoiding walk with both the top and edge vertices 
of degree 2. To do this we remove the top edge (U, - u~), add the vertices U: = U, + l i ,  
and U; = U, + 12, and the edges (U: - U;), (U, - U:) and (U, - U;). The resulting graph is 
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a self-avoiding walk with n + 2  edges with top vertex U: and edge vertex U:. (If 
xy = x: - 1, as can occur if the top vertex is of degree 1, a minor gloss is necessary 
similar to that described in § 2.) 

In order to form twin-tailed, two-tailed and Y-tailed tadpoles we now carry out 
the following three constructions: (i)  add the vertices U ,  = U: +U^, ,  U, = U: +I?* and 
U, = u2 + I?, and the four edges (U: - u l ) ,  (U: - u2), (U, - U,) and ( u 2 -  U,) giving a twin- 
tailed tadpole with n +6 edges; (i i)  add the two vertices U ,  = U: + ;, and U, = U: + cl 
and the three edges (U: - U,), (U:- u2)  and ( U ,  - u z ) ,  giving a two-tailed tadpole with 
n + 5  edges; (iii) add the vertices u1 = U: + cl, U, = uI + G I ,  u3 = U, + fi2 and u4 = U ,  + u*2 

and the five edges (U: - u l ) ,  ( 0 ,  - U,), (U, - uj), ( u 3  - u4) ,  (U, - u4),  giving a Y-tailed 
?adpole with n + 7  edges. 

Since, by these constructions, each walk yields a unique twin-tailed, two-tailed or 
Y-tailed tadpole (except for the walk direction) we have 

;c, s tc, c tk2i5, t c ,  s t',3!,, (3.16) 

so that each of the exponents y( l ) ,  y(2) and y(3) is greater than or equal to y. We 
summarise the results of this section as 

Y s Y ( 1 ) S  Y + I ,  yc y ( 2 ) < 2 y + l ,  y s y(3) s 2y + 1. (3.17) 

These bounds are consistent with the conjectured exponent y + h - 1 discussed in 
§ 1. Using the presumably exact value (Nienhuis 1982) of y = 13 in two dimensions 
and the renormalisation group estimate (Baker et al 1978, le Guillou and Zinn-Justin 
1980) y = 1.1615 in three dimensions, we give the corresponding numerical values of 
the upper bounds in (3.17) in table 1 .  

Table 1. Series estimates of critical exponents for d = 2 and 3 dimensions. The conjectured 
exponent ( y + b - I )  and numerical values of the upper bounds are given for comparison 
purposes. 

d = 2  d = 3  

Tadpole Upper Series Upper Series 
topology bound y + b - 1 estimates bound y + b - I estimates 

One-tailed 1.34375 1.34375 1.35*0.05 1.1615 1.1615 1.2 * 0.1 
Twin-tailed 2.343 75 2.343 75 2.5+0.2 2.1615 2.1615 2.3 * 0.5 
Two-tailed 3.6875 2.343 75 2.8 i 0.7 3.323 2.1615 2.0* 1.5 
Y-tailed 3.6875 3.343 75 3 . 0 1  1.5 3.323 3.1615 - 

- N o  estimate possible with available data. 

4. Series derivation and analysis 

As in previous sections, we focus attention primarily on weak embeddings of twin-tailed, 
two-tailed and Y-tailed tadpoles. Data are presented in the appendix for the square 
(sQ), triangular (T) and simple cubic (sc) lattices and are classified by the total number 
( n )  of bonds. For twin-tailed tadpoles, t ( , l )  extends through n = 21, 16, 16 for the SQ, 

T and sc lattices, respectively; for two-tailed and Y-tailed tadpoles, t?' and t',') extend 
through n = 14, 13, 12 and n = 14, 11, 12, respectively. In certain cases this represents 
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a significant extension of existing data (Domb 1960, McKenzie 1967, Guttmann and 
Nymeyer 1977). 

Several methods were used to obtain the new data. The most direct method was 
computer enumeration of each realisation of a given topology followed by summation 
over all realisations. Since the number of realisations to be considered increases 
asymptotically like n’-I ( I  is the number of lines in the topology), this method rapidly 
becomes impractical. For cy’ ,  we have been able to generate somewhat longer series 
by viewing these embeddings as random walks having no immediate reversals and 
precisely one self-intersection at a vertex of degree 4, and adapting the ‘dimerisation’ 
method of Torrie and Whittington (1975) to this case. The remaining method involved 
enumerating all lattice animals with n bonds ( n  = 1,2,3, .  . .) and classifying them 
according to the set ( c ;  n3, n4, . . . , n4). Clearly this classification does not specify the 
topology uniquely. For example, tL2’ and t‘,‘’ are produced as a sum ( tL2’ + tf’) .  It is, 
however, possible to ‘separate’ these topologies using published data and the following 
counting theorem first derived by McKenzie (1967): 

2 tL3’ + 4t:’ = ( n  - 2)( (T - 1 ) c, - I - 2 2 ( i - 1 ) ti,n - 2 t!,“ + 3asL3? I - 3 sL3). (4.1) 

Here c, denotes the number of undirected self-avoiding walks with n steps, ti,n denotes 
the number of simple (or one-tailed) tadpoles with i bonds in the ‘head’ and n in total 
(Guttmann and Sykes 1973), s i3 )  denotes the number of stars with three branches and 
n bonds in total (Gaunt et a1 1984) and (T + 1 is the lattice coordination number. 

We have analysed the data in the appendix using the standard series analysis 
methods (Gaunt and Guttmann 1974) employed by Gaunt et al (1984). For example, 
the exponent y(  1) can be estimated from the sequence yn ( l )  = 1 + n [ ( r , / f i )  - 11, where 
the ratio r,  = t!,”/t??l and fi  is an estimate of p for which we have used the unbiased 
estimates of Watts (1975). We also form linear extrapolants y i (  1) = 
[ny,(l)-(n - m)y,-,,,(l)]/m from adjacent points ( m  = 1) for the  lattice, or alternate 
points ( m  = 2) for the SQ and sc lattices, and the averages y:(  1) = &[y,( 1) + y i (  l)]. 

Plots against l / n  of y,(l) ,  -yi( 1 )  and y:(  1)  are given in figure 6 for the SQ and T 

lattices. The corresponding plots for the sc lattice are shown in figure 7. Our best 
estimates of y(1) are 

y(  1)  = 2.5 * 0.2 

= 2.3 f 0.5 

( d = 2 )  

( d  =3) .  

We have analysed in a similar fashion all the data given in the appzndix. The 
series for the two-tailed and Y-tailed tadpoles are less well behaved than those for the 
twin-tailed tadpole and we give some typical results in figure 8. Our estimates of the 
exponents are given in table 1. We have also analysed the data available in the literature 
(Guttmann and Sykes 1973, Hioe 1967) for simple (one-tailed) tadpoles and our 
exponent estimates are also given in table 1. 

The series estimates of the exponents for one-tailed and twin-tailed tadpoles are 
slightly higher than the numerical values of the upper bounds. In view of this, and 
the manner of convergence displayed in figure 6, for example, we suggest that the 
exponents may be exactly y and y + 1, respectively. Since the number of branches ( b )  
is 1 and 2, respectively, these resuits support our conjecture, that the value of the 
exponent is given by y + b - 1. The numerical estimates given in table 1 for the other 
topologies are also consistent with this conjecture. 
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Figure 6. Plots against I / n  of biased ratio estimates 
of y (  1) for weak embeddings of twin-tailed tadpoles 
on the square (U) and triangular (A)  lattices. The 
conjectured exponent ( y + 1 ) is indicated by an arrow 
and the upper and lower bounds by U and L, respec- 
tively. 

Figure 7. Plots against l / n  of biased ratio estimates 
of y (  I )  for weak embeddings of twin-tailed tadpoles 
on the simple cubic lattice. The conjectured 
exponent ( ? + I )  is indicated by an arrow and the 
upper and lower bounds by U and L, respectively. 

5. Connection with renormalisation group results 

In this section we use arguments similar to those of Whittington er al (1983) and Gaunt 
er a1 (1984) to reconcile our result that the exponent depends on b but not on c, with 
the renormalisation group prediction (Lubensky and Isaacson 1979, Family 1980) that 
the exponent is independent of branching and cycle fugacities. The conjectured form, 
y + b - 1, for this exponent plays a central role in this reconcilation. 

Let us define fugacities z b  and z, associated with branches and cycles, respectively. 
The generating function for all lattice animals is 

(5.1) 

where an,,& is the number of embeddings of lattice animals having n bonds, b branches 
and c cycles. In general, this is a sum over many topologies. The coefficient of z: in 
(5.1) is 

( 5 . 2 )  
b G,(n, z b )  an,b,czb* 

b 
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Figure 8. Plots against l / n  of biased ratio estimates of y ( 2 )  for weak embeddings of 
two-tailed tadpoles on the square (0) and triangular ( A )  lattices. The conjectured exponent 
( y + 1 )  is indicated by an arrow and the upper and lower bounds by U and L, respectively. 

If we replace 
write 

by its conjectured asymptotic form Ab,cny+b-2p" for b 2 1, and - AO,cn'(C'pn for animals with b = 0, then 

Gc(n, z b ) -  ny-2pfl Ab,c(nZb)b +Ao,,n"')pn 
b P  I 

(5.3) 

a 

B C ( ~ ) =  1 Ab,cWb (5.4) 
b = l  

is the generating function of the amplitud'es Ab,, 

c cycles). If we assume (Whittington et a1 1983) that 
From (5.2) we see that Gc(n, 1) = uno the number of c-animals with n bonds (and 

a,, - A,n-'O+'A~, ( 5 . 5 )  

B,( W )  - Ac~2+C-80-Y ( h o / p )  - A O , , W ~ ( ~ ) + ~ - ~ .  (5.6) 

then it follows that 

Substituting this equation into (5.3) we obtain, at least for zb close to the c-animal 
limit ( z b  = l ) ,  

Gc( n, zb) - ( A C Z ~ + C - ~ o - Y ) ~ - ' o + C ( h ~ ~ ' - L b ) f l ,  (5.7) 
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where we have kept only the dominant term. Setting c = 0 essentially reproduces (5.13) 
in Gaunt et a1 (1984), the minor differences arising from different definitions of fugacity. 

Inserting (5.7) into (5.1) we obtain 

G( n, Zb, Z,) -c (AcZZb+C-eo-Y ) n -eo+' ( A 2 ' - %) ' Z  f- 
C 

where 

C( U )  = ACuC ( U  = nzbz,) 
C 

(5.8) 

(5.9) 

is the generating function for the amplitudes A, From (5.1) we see that G( n, 1,  1 )  = a,,, 
the total number of lattice animals with n bonds. If we assume (Duarte and Ruskin 
1981, Gaunt et al 1982) 

a,, - An-'oA", (5.10) 

then 

C ( U )  - A(A /Ao)", (5.1 1 )  

so that, at least close to the animal limit (Zb = z, = l ) ,  

G(n, zb, z,) - ( A ~ ~ - e o - Y ) n - e a ( p ' - Z b A , ! , b ( ' - ' ~ ' A % z ~ ) n .  (5.12) 

As expected, the amplitude and growth parameter are fugacity dependent whereas 
the critical exponent is not. Thus the critical exponent for branched polymers with 
cycles is independent of the branching and cycle fugacities. 

6. Discussion 

In this paper we have considered branched polymers with a specified topology. We 
have proved (in § 2) that the growth constant for an animal with c cycles and nk 
vertices of degree k ( k  = 3, . . . , 2 d )  is equal to p, the growth constant for self-avoiding 
walks. We have derived bounds on critical exponents (in § 3) and have estimated the 
values of these exponents using series analysis (in § 4), for several particular topologies. 
These results are consistent with the exponent being y + 6 - 1 ( 6  # 0), as conjectured 
for trees by Gaunt et al (1984). An interesting feature of this extended conjecture is 
that the exponent is independent of c. This is consistent with previous results on 
dumbbells (Guttmann and Whittington 1978) and tadpoles (Whittington et a1 1975). 
We note that the conjecture is not intended to apply to graphs with 6 = 0. Several 
examples with 6 = 0 have been studied (e.g. Martin et al 1967, Guttmann and Whitting- 
ton 1978) and the exponents clearly depend on the cyclomatic index, c. 

In § 5 we have discussed the connection between our results and those obtained 
using renormalisation group methods. We have presented an heuristic argument, using 
our conjectured form for the exponent, that the universality class of branched polymers 
is independent of branching and cycle fugacities. However, if the numbers of branches 
(6)  and cycles (c )  are fixed, rather than being controlled by fugacities, the critical 
exponent does depend on 6 but not on c. 

We have concentrated in this paper on weak embeddings but we expect that 
analogous results will hold for strong embeddings. This would be consistent with 
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general universality considerations and with previous work on related problems (Gaunt 
et a1 1982, 1984, Whittington et al 1983). 
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Appendix. Exact enumeration data (new data are indicated by t). 

Table A l .  Twin-tailed tadpoles, rLlJ 

n T SQ sc 
~~ 

5 36 
6 342 4 72 
7 2328 24 720 
8 I3 860 96 5688 
9 76 368 368 38 328 

10 400 056 1264 238 728 
1 1  2023 446 4252 1412 844 
12 9972 846' 13 532 8046 660 
13 48 185 460t 42 756t 44 724 012t 
14 229 185 732t 130 4961- 242 991 1441- 
1 5  1076 273 700t 397 0641- 1301776272t 
16 5001229908+ 1 180 420t  6870013452t 
17 3502916t 
18 10226316t  
19 29 817 072t 
20 85 890 408t 
21 247 191 136t 

Table A2. Two-railed tadpoles, t ; l J .  

n T SQ sc  

5 
6 
7 
8 
9 

io 
I 1  
12 
13 
14 

90 
999 

7572 
48 750 

285 654 
1575 174 
8321 868 

42 595 239t 
212761356t 

24 288 
i36: 2808 
6461. 24 582 

25321 170 100 
9452: 1 132 080 

32 584t 6891 288 
109 9621 41 163 150 
354 9281 

1132 726t 
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Table A3. Y-tailed tadpoles, tk3). 

T SQ sc 

6 192 
7 2712 241 480 
8 24 732 184t 6624 
9 184 1 I6 1044t 66 984 

10 1217400 4796t 5 5 1  976 
I 1  7440 702 20 OOOt 4100 040 
12 77 084t 28 123 152 
13 282 464t 
14 993 088t 

References 

Baker G A Jr, Nickel B G and Meiron D I 1978 Phys. Reo. B 17 1365 
Domb C 1960 Ado. Phys. 9 149 
Duarte J A M S and Ruskin H J 1981 J. Physique 43 531 
Family F 1980 1. Phys. A:  Math. Gen. 13 L325 
Gaunt D S and Guttmann A J 1974 Phase Transitions and Critical Phenomena vol 3, ed C Domb and M S 

Green (New York: Academic) p 181 
Gaunt D S, Lipson J E G,  Martin J L, Sykes M F, Torrie G M, Whittington S G and Wilkinson M K 1984 

J. Phys. A :  Math. Gen. 17 211 
Gaunt D S, Sykes M F, T o m e  G M and Whittington S G 1982 J. Phys. A :  Math. Gen. 15 3209 
Guttmann A J and Nymeyer A 1977 Uniuersity of Newcastle, NSW,  Research Report N o  188 
Guttmann A J and Sykes M F 1973 J. Phys. C: Solid State Phys. 6 945 
Guttmann A J and Whittington S G 1978 J. Phys. A :  Math. Gen. 11 721 
Hammersley J M 1961 Proc. Camb. Phil. Soc. 57 516 
Hammersley J M and Morton K W 1954 J. R. Stat. Soc. B 16 23 
Hioe F T 1967 PhD Thesis (Unioersity of London) 
Le Guillou J C and Zinn-Justin J 1980 Phys. Reo. B 21 3976 
Lipson J E G and Whittington S G 1983 J. Phys. A :  Mafh. Gen., 16 3119 
Lubensky T C and Isaacson J 1979 Phys. Reo. A 20 2130 
Martin J L, Sykes M F and Hioe F T 1967 J.  Chem. Phys. 46 3478 
McKenzie D S 1967 PhD Thesis (University of London) 
Nienhuis B 1982 Phys. Reo. Lett. 49 1062 
Seitz W A and Klein D J 1981 J. Chem. Phys. 75 5190 
Sykes M F 1961 .L Math. Phys. 2 52 
Torrie G M and Whittington S G 1975 J. Phys. A:  Math. Gen. 8 1178 
Watts M G 1975 1. Phys. A :  Math. Gen. 8 61 
Whittington S G, Torrie G M and Gaunt D S 1983 J. Phys. A :  Mafh.  Gen. 16 1695 
Whittington S G, Trueman R E and Wilker J B 1975 J. Phys. A :  Math. Gen. 8 56 
Zimm B H and Stockmayer W H 1949 J. Chem. Phys. 17 1301 


